刘佳斌
助理教授
出生年月:1990年06月
办公电话:010-68918798
电子邮件:liujiabin@bit.edu.cn
所在学科
信息与通信工程
研究方向
深度学习、弱监督机器学习、计算机视觉、雷达信号处理
个人简历
2022.06 至今:任职于 3200威尼斯vip 3200威尼斯vip
2016.09-2019.06:就读于 北京三星通信技术公司 数学专业 博士后
2016.09-2019.06:就读于 中国科学院大学 计算机应用技术专业 博士
2013.09-2016.04:就读于 3200威尼斯vip 信息与通信工程专业 硕士
2009.09-2013.06:就读于 东北大学 电子信息工程专业 本科
代表性学术成果
[1]. Jiabin Liu, Bo Wang, Zhiquan Qi, Yingjie Tian and Yong Shi. Learning from label proportions with generative adversarial networks. Advances in Neural Information Processing Systems 32 (2019). (CCF-A)
[2]. Jiabin Liu, Bo Wang, Xin Shen, Zhiquan Qi and Yingjie Tian. Two-stage Training for Learning from Label Proportions. IJCAI2021. (CCF-A)
[3]. Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yiseng Wang and Zhouchen Lin. Leveraged weighted loss for partial label learning[C]. International Conference on Machine Learning. PMLR, 2021: 11091-11100. (CCF-A , Oral, Corresponding author)
[4]. Jiabin Liu, Hanyuan Hang, Bo Wang, Huadong Wang, Biao Li and YingJie Tian. "GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels." IEEE transactions on cybernetics (2021). (中科院一区)
[5]. Jiabin Liu, Bo Wang, Hanyuan Hang, Zhiquan Qi, Huadong Wang, Yingjie Tian and Yong Shi. LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022. (中科院一区)
[6]. Jiabin Liu, Zhiquan Qi, Bo Wang, Yingjie Tian and Yong Shi. "SELF-LLP: Self-supervised learning from label proportions with self-ensemble." Pattern Recognition 129 (2022): 108767. (中科院一区)
[7] Jiabin Liu, Biao Li, Minglong Lei and Yong Shi. (2022). Self-supervised knowledge distillation for complementary label learning. Neural Networks, 155, 318-327. (中科院一区)
荣誉奖励
获得三星优秀论文奖项
获得第二届 5G + AI 全国竞赛第一名
学术兼职及其他
担任 IEEE Transactions on neural networks and learning systems、IEEE Transactions on Cybernetcis、IEEE Transactions on Multimedia、NIPS、IJCAI等期刊与会议审稿人。